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FOREWORD

This final technical report covers all the work performed
under Air Force Contract F33615-76-C-3113 entitled '"Fastener
Hole Quality". The work was performed during the period from
June 1976 to October 1978. This project was accomplished under
the technical direction of Mr. John M. Potter of the Fatigue,
Fracture and Reliability Group, Structural Integrity Branch,
Structures Division, Air Force Flight Dynamics Laboratory, Wright-
Patterson Air Force Base, Ohio. This program has as its overall
objective to establish and determine the equivalent initial flaw
size (EIFS) in fastener holes to support USAF Damage Tolerance
and Durability Requirements as stated in MIL-A-83444 and MIL-A-
008866 (B), respectively, and to establish the criteria for
fastener hole quality with respect to structural performance.

This program was performed in the Materials Research
Laboratory, Materials Technology Section, Structures and Design
Department of the Fort Worth Division, General Dynamics
Corporation, The program was managed by Dr. P. J. Noronha with
valuable participation and technical support by Mr. S. P. Henslee,
Mr. D. E. Gordon, and Dr. J. C. Couchman of Materials Research
Laboratory; Mr. Z. R. Wolanski and W, S. Margolis of Metallurgical
Laboratory; Mr. L. J. Backof of Manufacturing Technology and Support;
Mr. G. Hales of the Fracture and Fatigue Group; and Mr. G. R.
Arnett of Central Data System Center. This program was under the
overall supervision of Dr. B. G. W. Yee as management focal point
interface.

This final program report was submitted by -the authors on
November 6, 1978.
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SECTION I

INTRODUCTION

Fastener holes are regions of high stress concentration
and provide the primary locations for initiation and growth of
fatigue cracks in metallic aircraft structures (Reference 1).
This phenomenon is largely responsible for limiting the durability
and economic life of such structures. Durability design procedures
incorporating fracture mechanic analysis methodologies to account
for the effect of fatigue cracks appear in literature (Reference 2).

The fatigue behavior of a sample of supposedly identical
fastener holes is extremely variable, indicating that material,
manufacturing, and assembly quality influence the initiation and
growth of cracks. Only recently have investigations into the
effects of manufacturing parameters on fatigue life of fastener
holes been pursued. Koster et al. (Reference 3) investigated
tapered fastener systems; Moore (Reference 4) reported on
straight-shank and interference-fit fastened joints. The majority
of previous studies were done using nonproduction equipment to
prepare the specimens and fastener holes. This program is a com-
prehensive investigation of the effect of manufacturing and
assembly procedures employed in aircraft production on the fatigue
behavior of fastener holes.

The program initially consisted of five separate tasks. In
Task I, the influence of manufacturing quality on the fatigue be-
havior of straight-shank drilled and drilled and reamed holes in
aluminum was investigated for a no-load transfer condition. Task
II extended the investigation of fatigue behavior dependence on
manufacturing and assembly procedures to the low-load transfer
condition. The objective of Task III was to improve the life of
low-load transfer specimens by elimination of the most detrimen-
tal fatigue mechanisms established in Tasks I and II. The first
three tasks comprise a comprehensive investigation of the straight-
shank-fastened joints typical of aluminum air frame structure.

A limited investigation of interference systems, i.e., cold-
worked and taper-lok holes in aluminum, was performed in Task IV.
The fatigue behavior of straight-shank fastener holes in high-
strength steel and titanium was analysed in Task V.



"Production hole quality', a term encompassing all
manufacturing and assembly parameters affecting fatigue behavior,
was correlated to the life of fastener holes using the Equivalent
Initial Flaw Size Concept (EIFS) defined in MIL-A-83444. As a
result of the extensive data base accumulated during the course of
this program, substantial improvements in the EIFS analytical
methodologies were realized. Appendix B contains a compre-
hensive description of the EIFS concept, its application to the
evaluation of hole quality. It also describes how the EIFS
approach may be applied to the initial design of fastener holes
to ensure on a quantitative basis a durable airframe structure.



SECTION II

PROGRAM OBJECTIVES AND TECHNICAL APPROACH

The primary objective of this program was to establish the
cause of variation in fatigue life of metallic structure contain-
ing fastener holes and to provide methods for controlling the life
of individual fastener holes during their manufacture. In order
to provide a quantitative basis for correlation of the fatigue
life to the manufactured quality, a fracture mechanics approach
for life prediction was employed.

The technical approach selected for this program is shown
in Figure 2-1. Fastener holes were fabricated in coupon test
specimens by use of hand-held automatic processes and tooling
representative of that used in actual production. These fastener
holes were then totally characterized by five state-of-the-art
nondestructive inspection (NDI) techniques. Following this surface/
dimensional characterization, straight-shank, protruding-head
fasteners were installed and the coupons were fatigue tested.
Realistic crack growth data was ensured through fatigue testing with
an F-16 or a bomber load history.

Upon completion of coupon fatigue testing, the crack growth
behavior, i.e., crack growth curves, was established for each
fatigue crack. These crack growth curves were analytically back-
tracked to establish the equivalent initial flaw size (EIFS), a
fictitious size of a flaw existing at the time of manufacture within
the fastener hole. These flaws ideally grow from the application
of the first load and follow the analytical crack growth curve.

The EIFS and NDI results, having been established for each
specimen tested, were compared. Correlations were to provide an
inspection-based means by which the EIFS could be monitored during
manufacture. This objective was revised so the fatigue life of
structure containing holes could be extended through procedural
control of hole production techniques. EIFS distributions were
ohtained for the various processes, allowing relative evaluation of
those processes to be performed accurately or with a minimum amount
of effort.

Those processes found to produce the best hole quality, i.e.,
the longest fatigue lives, were introduced and implemented in
production. At this time these changes are producing manufactured
fastener holes at no increase in cost with a substantial increase
in the durability of aluminum aircraft structure.
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2.1 MATERIAL SELECTION AND SPECIMEN FABRICATION

The material selected for Tasks I, II and III was 7475-T7351
aluminum. This alloy is extensively used in fracture and dura-
bility critical areas of the F-16, such as the lower wing skins.
Coupon specimens were fabricated from three lots of production
stock. Mechanical properties were obtained for each lot to
assure that F-16 production specifications were equalled or
exceeded.

Specimens were designed for two conditions: no-load transfer,
(Task I) and low-load transfer (Tasks II and III). The no-load
transfer specimens, Figure 2-2,are a standard dog-bone configuration
with a reduced mid-section and constant width and thickness in the
gage areas. Single fastener holes were drilled in these specimens
and filled with straight-shank, protruding-head NAS 6204-7 fasteners.
These fasteners were used throughout the program. Both nut and
head ends of the fasteners received steel washers.

The low-load transfer specimens, Figure 2-3, were designed to
achieve 157 load transfer. This level of load transfer and design
approach 1is representative of the F-16 lower wing skin. The
reversed double dog-bone geometry closely follows MIL-STD-1312
standard load-transfer specimens. Both fastener holes in this
specimen geometry were nominally a 0.250-in diameter, as were those
in no-load transfer specimen.

Two hole-manufacturing methods were employed to produce the
fastener holes in Tasks I and II. Both hole preparation techniques
were hand-held automatic equipment producing different classes of
holes. Clearance fit holes of 0.250-in. - 0.253-in. diameter
were produced by use of the Winslow Spacematic Model HS-1, Figure
2-4. The Spacematic is pneumatically driven with pneumatic over
hydraulic pressure for feed rate control and retraction. This is
a single-step drilling process.

Transition fit holes of 0.2500-in. - 0.2507-in. diameter were
produced by a two-step drill and ream process using the Quacken-
bush QDA-100. This unit is pneumatically powered with feed rate
mechanically controlled. Both Spacematic and Quackenbush wunits
require tooling to accurately control hole location. The tooling
used in this study was representative of that used on the F-16
production line, as well as those operators of the drilling
equipment.
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In order to better evaluate these two conventional processes,
a variable was introduced in the manufacturing state of the fastener
holes - improper drilling or drilling and reaming. Improper or
abusive techniques were process deviations that would not generally
be observed or tolerated on a production line. The processes
included the use of intentionally dulled cutters, inadequate
pneumatic line pressure, presence of titanium or steel chips,
and extremely dirty cutting tools, i.e., built-up edges. The
purpose of the improper techniques was to bring out rogue flaws
or gross geometrical discontinuities.

2.2 NON-DESTRUCTIVE INSPECTION

Surface integrity and non destructive techniques were used
to characterize everyhole subjected to cyclic loading. The
techniques used were:

(1) Eddy Current

(2) Ultrasonics

(3) Rotary Proficorder (Dial Bore Gauge)
(4) Linear Proficorder

(5) Rubber Cast

The techniques utilized were those having the potential of being
used in the production environment with demonstrated quantitative
and repeatability measurements.

Comparisons were made between NDI parameters as measured by
the different inspection techniques and EIFS. Correlations were
attempted in order to identify holes with poor fatigue life from
NDI data. A master list was developed to record the NDI reading
for each technique, the specimen number, the fastener hole number,
angular position, and depth from the surface.

2.3 SPECIMEN TESTING/LOAD HISTORIES/TEST PLAN

The fatigue testing of all coupon specimens was performed
using six servo-controlled, hydraulically actuated, closed-loop-
feedback load frames. Representative results were assured through
the use of computer-generated loads spectra, which were independ-
ently controlled at each load frame. Real-time strip-chart
recorders allowed computer command signals to be followed to within
a +1.0% accuracy.



Spectrum testing was performed using either a fighter
or bomber spectra. The fighter load history used was the F-16
400-hour block randomized wing-root bending spectrum. This load
history was a preliminary development spectrum and is more
severe relative to the actual F-16 durability load history.
Testing was carried out for two equivalent lives for the fighter,
or 16,000 flight hours. The bomber load history used was the B-1
or AMAVS (Advanced Metallic Air Vehicular Structure) spectra,
developed at General Dynamics Fort Worth Division. An equivalent
of three lives, or 3840 flights, was the point at which testing
was truncated.

2.4 TFRACTOGRAPHY

Following fatigue testing the largest crack in each coupon
was exposed by application of a tensile overload. Crack growth
behavior of these cracks was then determined using optical fracto-
graphic techniques. Crack growth curves were established from
the maximum crack length to below 0.005 inch for all specimens.
This means of producing crack growth histories was very accurate
and reproduceable, yielding consistant empirical results.

2.5 CRACK GROWTH ANALYSIS

On completion of fatigue testing a data generation-synthesis
task was initiated. First crack growth analyses were produced to
match as closely as possible the empirical crack growth behavior
of the fastest growing crack of each test series. This analysis
was performed in an iterative manner using an in-house computer
routine (CGR, Crack Growth Rate). The crack growth analyses
routine makes use of the Forman crack growth equation in conjunction
with the Wheeler retardation model. Best fits to the empirical
data were achieved by varying the amount of retardation. Other
variables of importance are listed in Table 2-1. The ability to
analytically fit empirical crack growth data in a concise and
regular manner produced several desirable results, the most obvious
of which was the consistency of the Equivalent Initial Flaw Size
data, to be presented later.

2.6 EQUIVALENT INITIAL FLAW SIZE CONCEPT

The fatigue behavior of every specimen tested in this program
was quantified using the Equivalent Initial Flaw Size (EIFS)
approach. The EIFS method, specified in MIL-STD-83444A (Reference
5), is a means of measuring and possibly characterizing the economic
life of structures having fastener holes. As shown in Figure 2-5

10
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the EIFS is that pseudo fatigue crack assumed to be present in a
fastener hole at time zero, or prior to putting a structure into
service. Under the spectrum fatigue loading encountered, the
fatigue crack exhibits the crack growth behavior shown. The
economic limit is described as that service life duration required
for the crack to reach a depth of 0.030 inch.

Fatigue crack depth at the end of one life is directly pro-
portional to the EIFS of a fastener hole as shown in Figure 2-5.
A population of fastener holes possesses a range of EIFS values
that will govern the final crack depths at the end of the design
service life of the structure.

The EIFS for the largest fatigue crack in each specimen
tested was established by matching the fractographic crack growth
data to an analytical curve. Typically, fractographic methods
are not able to track crack growth histories below crack depths of
0.001 - 0.01 inch. The lower limit is dependent on the amount of
wear occurring at the crack tip, which obscures fatigue striation
bands. EIFS values obtained in this program were characteristically
in the range of 0.0001 - 0.005 inch. As a result, the analytical
curves had to be regressed to smaller initial crack dimensions.

EIFS values were obtained for each fatigue crack in a sample
of specimens using a single analytical curve, described below. All
specimens in a sample were tested with either a fighter or a
bomber load history at one selected maximum spectrum stress level.
The behavior of fatigue cracks obtained for any given sample should
scatter in the growth rate as well as the time to crack initiation.
Typical behavior showing the amount of scatter is seen in Figure
2-6 for drilled and reamed fastener holes. The five specimens
whose fractographic curves are plotted indicate the range of
crack growth behavior occurring for 38 specimen tested.

Selection of a simple analytical curve for determination of
individual EIFS values for each specimen was made using well-
defined criteria. An analytical curve was grown so as to define a
conservative bound, as seen in Figure 2-7, to the fastest growing
crack in a sample of specimens, over as large a range of crack
depth as possible. The EIFS for each specimen was obtained by
matching the analytical crack growth to each fractographic crack
growth history using regression analysis to obtain the best fit.
The analytical and fractographic curves were matched between crack
depths of 0.0l - 0.05 inch. The crack depth value of the
analytical curve, corresponding to time zero for each fractographic
crack growth history, was the EIFS value for that fastener hole.
An EIFS value was obtained for every specimen in a sample.

13
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Figure 2-7 Selection of a Single Analytical Curve for a Sample of Fractographic Crack Growth Histories
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